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A model problem is analysed to study the microscopic flow near the surface of 
two-dimensional porous media. In  the idealized problem we consider axial flow 
through infinite and semi-infinite lattices of cylindrical inclusions. The effect of lattice 
geometry and inclusion shape on the permeability and surface flow are examined. 
Calculations show that the definition of a slip coefficient for a porous medium is 
meaningful only for extremely dilute systems. Brinkman’s equation gives reasonable 
predictions for the rate of decay of the mean velocity for certain simple geometries, 
but fails for to predict the correct behaviour for media anisotropic in the plane normal 
to the flow direction. 

1. Introduction 
The flow of viscous fluid through permeable materials has been a problem of 

long-standing interest for fluid dynamicists. Historically, the study of such flows 
begins with Darcy’s law (1856) 

k 
P 

u = --vp. 

This states that the average fluid velocity is proportional to the average pressure 
gradient. The coefficient k is a physical property of the porous material and has units 
of length squared. Although Darcy ’s law was originally proposed on empirical 
grounds, it may be justified theoretically for statistically homogeneous, isotropic 
materials and low-Reynolds-number fluid flow. For anisotropic media, the equation 
is easily generalized through the introduction of a permeability tensor K 

Darcy’s law has been applied to a vast array of problems involving flow through 
porous media and has proved to be a reliable model for flow in the interior of such 
materials. 

Despite its success for interior flows, Darcy’s law is not a complete model for porous 
media. When a fluid flows past a porous body of finite size, the interior flow must 
be matched with the exterior pure fluid flow at the boundary surface. Under normal 
circumstances, we require continuity of velocity and surface stress across this 
boundary; however, this is not possible owing to the reduced order of Darcy’s law 
as compared with the Stokes equations. To circumvent this difficulty, one of two 
approaches is commonly employed. Beavers & Joseph (1967) proposed that Darcy’s 
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law be retained for the interior flow, but that the boundary conditions be modified 
to match the exterior flow. They suggested a ‘slip condition’ of the form 

Here u is the local average tangential velocity outside the body, u,, is the tangential 
velocity given by Darcy’s law and a is the slip coefficient, a dimensionless constant 
depending on the local geometry of the interstices. The additional boundary 
conditions are continuity of normal velocity and normal stress. The slip condition 
was proposed on heuristic grounds to replace the smooth change in the flow field with 
a simple step change across a nominal boundary surface. Saffman (1971) gave 
theoretical justification for the slip condition of Beavers & Joseph and showed that 
the condition could be derived in the form 

This expression is sufficient to calculate the outer flow correct to O(ki) .  Saffman notes 
that detailed analysis of the transition region and precise definition of the nominal 
boundary (y = 0) are necessary to describe the slip velocity to higher order in k. In  
addition, the precise location of the nominal boundary surface will affect the value 
of the slip coefficient, even to the point that it may take on negative values. 

A second approach to the problem of matching the interior and exterior flows is 
to replace Darcy’s law with an equation of higher order. Brinkman (1947) proposed 
an extension of Darcy’s law to describe flow near the surface 

- v p + p * v = u - - u  P = 0. 
k 

The first two terms represent the divergence of the local average viscous stress tensor 
incorporating an effective viscosity p*, while the third term represents the distributed 
resistance of the solid inclusions. 

Because Brinkman’s equation is of the same order as the Stokes equations, the 
standard continuity boundary conditions on velocity and stress may be applied. 
Howells (1974) used Brinkman’s equation to calculate the drag on an impermeable 
particle immersed in an isotropic porous medium comprised of a random fixed array 
of particles and gave justification for setting ,u* equal to p in the first approximation. 
For fixed arrays that are not sparse Brinkman originally suggested that the effective 
viscosity could account for the finite size of the inclusions. 

Saffman (1971) examined the applicability of Brinkman’s equation to the flow near 
the surface of a porous domain using averaged equations and gave as a more general 
result 

aP 
PJR,(X--5)U,(Wt; =pV2u --. ax( 

The integral on the left represent the distributed resistance of the averaged domain, 
evaluated at the point x. Each point -5 contributes a resistance proportional to the 
local average velocity and a resistance kernel dependent on both -5 and x. Brinkman’s 
equation results when the distributed resistance is replaced by the simple Darcy term. 
This is achieved by approximating the resistance kernel with 
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The corresponding resistance term for an anisotropic medium is 

R&-<) = Rg S ( x - h  

-vp+pv2u-pRu = 0. 

and the resulting Brinkman equation is 

The simple delta-function resistance kernels hold strictly for points in the interior 
of the porous medium, well away from the surface. More generally, we may expand 
the kernel as a series in the delta function and its derivatives, which would through 
integration lead to terms involving derivatives of u and resistance terms which vary 
with x across the porous boundary layer. Saffman concluded that the Darcy term 
for the resistance is not a useful approximation in this case. Unless further 
justification is given, the first and second derivatives of u should appear in the 
distributed resistance in order for the second derivatives in the div u terms to be 
meaningful. Thus Brinkman’s equation may not be a consistent approximation in 
the boundary region of interest, and the distinction between the effective viscosity 
and the fluid viscosity is not sufficient to resolve this difficulty. 

Experimental studies to assess the usefulness of Brinkman’s equation and slip 
conditions have been very limited. Beavers & Joseph (1967) conducted experiments 
on a rectangular channel with a porous wall. By measuring the increased flow rate 
compared with impermeable walls, they were able to calculate slip coefficients for two 
natural porous materials. Values of a from 0.1 to 4 were found and a strong 
dependence on geometric parameters other than the permeability was suspected. This 
view was confirmed by Beavers, Sparrow & Masha (1974), who found that the value 
of a for a certain material doubled after its surface was remachined. Taylor (1971) 
performed similar experiments with a grooved plate as a well-characterized model 
for an idealized porous medium. He found values of a ranging from 1.308 to > 7 as 
the thickness of the grooves was changed. Moreover, the experimental results showed 
good agreement with theoretical calculations for the same geometry by Richardson 
(1971). The relative utility of Brinkman’s equation may be inferred from the above 
results by noting that continuity of stress and velocity is equivalent to assuming 
a = 1 for these simple flows. In  another study, Matsumoto & Suganuma (1977) 
measured the settling velocity of model flocs of steel wool and found good agreement 
with the velocities predicted by Brinkman’s equation. 

In the present effort we examine the microscopic flow in geometries representative 
of real porous media. We consider a variety of different media composed of periodic 
lattices of solid inclusions. Previous studies of periodic lattices have considered simple 
arrays of cylinders or spheres. Thus Sparrow & Loeffler (1959) studied axial flow 
through arrays of cylinders, while Sangani & Acrivos (1982~)  analysed transverse 
flow in the same geometry. Zick & Homsy (1982) and Sangani & Acrivos (19823) 
considered flow through cubic lattices of spheres. In  all these efforts the goal was to 
find the permeability for infinite media. No attempt was made to consider flow over 
semi-infinite media or the effect of inclusion shape on the permeability. The primary 
goal of the present study is to address these issues by providing a precise description 
of the flow near the surface of porous media and evaluating the validity of the various 
macroscopic models. We shall restrict our attention to two-dimensional media, with 
the analysis and results for axial flow in this paper and the discussion of transverse 
flow in Part 2. 
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2. Mathematical formulation 
We shall consider two model problems corresponding to flow in the interior and 

to flow near the surface of a two-dimensional porous medium. In the first problem 
the fluid flows axially through a doubly periodic lattice of cylinders under the action 
of a pressure gradient dp/dz = -G.  In the second the lattice is semi-infinite in the 
y-direction, with a simple shear flow above the medium driving the flow in the surface 
layer. In  this case the pressure gradient is zero, since the development of a pressure 
gradient would require a bounding surface above the pure fluid. The model geometry 
and coordinate system are sketched in figure 1. 

With the assumption of unidirectional motion, the Navier-Stokes equations reduce 
to a simple Poisson equation for the axial velocity 

n 
ti 

v2u = -. 
P 

The continuity equation guarantees that U and hence G are independent of z, while 
the absence of lateral flow implies that G is a constant. It is most convenient to 
separate U into a particular solution up satisfying (1)  and a homogeneous solution 
u satisfying the two-dimensional Laplace equation V2u = 0. For simplicity, up may 
be taken as any suitable quadratic function of x and y. Thus we are left to find the 
solution of Laplace's equation subject to boundary conditions of no slip on the solid 
surfaces and periodicity- or continuity-type conditions on the periodic cell boundaries. 
A more precise specification of the boundary conditions will be given below. 

Since no analytical solutions are available for the complicated geometries under 
consideration, we must select an appropriate numerical technique. We have chosen 
the boundary-integral method, because it is easily adapted to different geometries 
and allows the straightforward implementation of periodic boundary conditions. In  
addition, it proves to be very well suited for an iterative solution of the semi-infinite 
problem. 

Briefly, we start with the well-known Green identity for harmonic functions 

an 1 1 ran 
u(xJ = [u(x)T-logr-(x)  dS, ( r  = xo-x), 

which gives the value of a function at an interior point in terms of the values of the 
function and its normal derivative around the boundary of the domain (see e.g. 
Sneddon 1957, p. 194). For a point xo on the boundary the well-known jump condition 
gives the same result except for a factor of 2 : 

an 1 u(xo) = --Js 1 [u(x)re-logr-(x) r*n dS. (3) 

The specification of the boundary data for u or duldn yields a Fredholm integral 
equation for the remaining function values. In the boundary-integral method the 
boundary shape and the functions u and duldn are discretized in an appropriate 
manner, reducing the integral equation to a system of linear algebraic equations of 
the form 

Here u(xm) and du/dn(x,) represent function values at discrete points along the 
boundary, while the matrices A and B represent integrals along the discrete elements 
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FIGURE 1. Model geometry for flow over the surface of a bounded porous medium. 

making up the boundary. The exact form of A and B depends upon the specific 
discretization employed. A comprehensive discussion of various implementations 
may be found in the recent monograph edited by Brebbia (1983). In  the present 
circumstances we choose the simplest representation with straight-line segments 
along the boundary and assume constant function values along each segment. This 
method is easy to apply and has the additional advantage that all integrations may 
be performed analytically, eliminating the need for special quadratures to deal with 
the singular kernels in (3). For smooth boundaries with continuous tangent vectors, 
this method gives errors 0 ( S 2 ) ,  where 6 is the length of a boundary segment. For 
piecewise-smooth boundaries with corners (such as encountered in our lattice cells) 
the error is 0 ( S 2 )  away from the corners, but 0(1) on the segment adjacent to the 
corner. This error arises from the x*n/ r2  kernel and is proportional to dulds, the 
derivative of u along the boundary. There are two ways to deal with this error. The 
first is to choose a particular solution such that dulde is zero at the corner, eliminating 
the error entirely ; the second is to choose variable length segments with progressively 
smaller segments near the corners. In either case the corner segment has negligible 
effect on the overall solution, and errors on other segments decrease as a2. A numerical 
test demonstrating the S2 error behaviour is shown in figure 2. All calculations 
presented in this paper were run on a CYBER 175 computer to a relative accuracy 
of at least 0.1 Yo. 

The boundary-integral method gives the values of the functions u and duldn at 
all points on the boundary. For many problems this is all the information required. 
In the present case, however, we need the total volume flow rate through the 
interstitial spaces to calculate the permeability of the lattice. Using Green's theorem 

[ u V ~ V - V V ~ U I ~ V  = 
JV 

with u the axial velocity and v = $2 (or any function with V2v = 1) yields 

Jv udV = fs 
an 
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FIGURE 2. Relative error for permeability as a function of the number of discretization points 
in the boundary-integral method: 0, c = 0.7; Q ,  0.1; V, 0.01. 

N 

Thus we may evaluate the total flow rate in terms of the calculated boundary 
values. Of course in our two-dimensional case the ‘volume ’ integral is an area integral, 
and the ‘surface ’ integral is around the perimeter of this domain. The flow rate due 
to the particular solution up may be evaluated with little effort by using numerical 
quadratures for the area integration. 

2.1. Boundary conditions for in$nite arrays 

Consider a square lattice of circular cylinders, the simplest case among infinite 
arrays. The unit cell and coordinate system is shown in figure 3 (a). The dashed lines 
indicate the four symmetry axes for this configuration. For pressure-driven flow we 
choose a particular solution up = i(G/,u)(r2-u2), where a is the cylinder radius. This 
choice preserves the problem symmetry and eliminates certain integrations. The 
no-slip condition requires U = up + u = 0 on the solid surface. Since up = 0 on this 
surface, we have the boundary condition u = 0 on the cylinder. On the fluid-fluid 
interface around the perimeter of the cell the combination of symmetry and 
periodicity requires that dU/dn = 0. Thus we have du/dn = -dup/dn on all fluid 
boundaries. This completes the specification of the boundary conditions for this 
lattice. Dividing the boundary into N discrete segments leaves N unknowns - the 
values of u on the fluid egments and the values of du/dn on the solid. These values 
are obtained from the solution of the linear system (4) by Gaussian elimination. In 
practice, we may exploit the eightfold symmetry to reduce the number of equations 
and unknowns to 4N. 

A more general two-dimensional array is shown in figure 3 (b). The solid boundary 
surface is labelled s while the two halves of the fluid boundary are labelled fi andf,. 
Segments along fi are related to segments along f, by translations corresponding 
to basis vectors of the lattice. It might appear that the dashed parallelogram in figure 
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FIQURE 3. (a) Unit cell for an infinite square lattice of circular cylinders. Dashed lines represent 
symmetry planes. ( b )  Unit cell for a general lattice with arbitrary inclusion shape. 

3 (b) would provide a simpler unit cell ; however, the all-fluid cell boundary will prove 
more convenient when we consider semi-inhite arrays. 

The no-slip condition for this array is u = -up on surface s. The periodicity 
conditions on the cell perimeter are ( u ) ~ ~  = ( u ) ~ ~  and (duldn) ,  = -(du/dn)fp, the 
minus sign arising owing to the change in the sense of the normal vector. Dividing 
the boundary into N segments again yields N unknowns - the values of du/dn on 
the solid and the values of u and duldn on the fluid boundaryf,. The solution of the 
linear system (4) gives these values. 

2.2. Boundary conditions for semi-infinite arrays 
For semi-infinite lattices the flow field is periodic in the %-direction but extends from 
- co to + 00 in the y-direction. As shown in figure 4 (a) for a simple square lattice, 
the domain covers a large number of cells both above and below the interface. If 
boundary conditions were specified on each cell independently, the problem would 
simply require the solution for each cell successively. Unfortunately, this is not the 
case. 
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FIQURE 4. (a) Unit cells for a semi-infinite lattice of circular cylinders. (b) Unit cell for a general 
semi-infinite lattice. 

We have periodic conditions at  the sides of the cells 

and continuity conditions at the top and bottom of each cell 
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where the superscript indicates the cell number, and the cells are numbered 
consecutively from bottom to top. A t  the top of the uppermost cell and the bottom 
of the lowermost cell we apply the infinity conditions 

The no-slip condition is simply (u), = 0 in each cell, since there is no pressure 
gradient and hence up = 0. 

The simultaneous solution for the flow field in all cells would represent an extremely 
large and expensive computational effort. To avoid this problem we adopt an iterative 
method of solution. Consider the cell containing the top row of inclusions; let this 
be cell zero. In the first iteration we apply the infinity conditions at the top and 
bottom of this cell; that is (du/dn)O = on fi and ( u ) O  = 0 on fi. With these 
specifications we calculate first approximations for u on the top and for duldn on 
the bottom of this cell. These values give first approximations for the boundary 
conditions on the adjoining cells. Thus for the pure-fluid cell above we require 

while for the lower cell with the inclusion 

In each of these cells we calculate values for u at the top and duldn a t  the bottom. 
These values are passed in turn to the next cells, and the process continues until the 
upper and lowermost cells are reached. To summarize, in each pure-fluid cell the 
boundary conditions are 

while in each solid cell 

A t  the start of the second iteration, we return to the zeroth cell. Now, instead of 
the infinity values, we employ the calculated values from adjoining cells in the 
previous iteration 

This process is repeated for all cells. For the pure-fluid cells the boundary conditions 
are u on the bottom from the current iteration and duldn on the top from the previous 
iteration. For the solid cells we use duldn on the top from the current iteration and 
u on the bottom from the previous iteration. We continue in this way until we again 
reach the upper- and lowermost cells. 

The third iteration follows in exactly the same manner, and the process continues. 
In practice, the corrections at each iteration overcompensate and the process as stated 
does not converge. This is easily corrected by introducing a relaxation parameter. 
Instead of simply replacing an old estimate by a new approximation, we employ a 
weighted average of the two. With this modification, the iteration converges rapidly. 
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The extension of this procedure for more general lattices is straightforward. Figure 
3 (b) shows a typical unit cell with the different sections of the cell perimeter labelled 
fl - f4. The periodicity boundary conditions are exactly as stated in (7). The matching 
conditions between adjoining cells and the steps in the iteration are also the same, 
the only differences being that fl and fi are slightly more general boundaries. 

The method outlined above may be used to obtain accurate solutions for the shear 
flow over semi-infinite lattices; however, one additional modification may be 
introduced to improve the numerical results. In the pure-fluid cells, instead of solving 
for u directly, we solve for the disturbance velocity ud = u-?(y-y,). With this 
definition, the calculated quantity tends to a constant a t  large y instead of a linear 
function of y. This minimizes the errors associated with the assumption of constant 
u on individual boundary elements. 

A few words are appropriate concerning the computational effort required for the 
iterative procedure we have developed. In a typical problem we might have ten cells : 
five deep in the lattice and five above the lattice. If five iterations are needed for 
convergence, we must solve for the flow field in a typical cell on the order of 50 t>imes. 
It would appear that a substantial increase in CPU time is needed compared with 
the infinite case. In  actuality, very little additional computation is needed owing to 
the nature of the boundary-integral method. The major computation tasks are the 
calculation of the matrices A and B in (7) and the inversion of the resulting coefficient 
matrix in the system of equations for the unknown values of u and duldn. Once these 
calculations are completed, any number of boundary value problems for the same 
cell geometry may be solved with negligible effort. Since all pure-fluid cells and all solid 
cells are identical, the matrix calculations and inversion need be done only once for 
each type of cell. Further, the matrices for the pure-fluid cells are submatrices of those 
for the solid cells. In conclusion, the iterative solution for the semi-infinite problems 
requires computation time comparable to the solution for a single cell, with only slight 
increase as the number of cells or number of iterations is increased. 

3. Axial flow through infinite arrays 
In this section we apply the method described above to study pressure-driven flow 

in infinite arrays. We shall begin by considering a detailed description of the flow for 
a few simple arrays, and then show how the permeability is affected by the geometry 
of the array. To start, we examine the velocity profiles for square arrays of circular 
cylinders at three different concentrations. Figure 5 (a) shows the profile for c = 0.01, 
characteristic of dilute arrays. In this case the velocity is nearly uniform over much 
of the interstitial area, with a logarithmic spike reducing U to zero on the small solid 
inclusions. This log r dependence is the asymptotic behaviour for all small inclusions 
independent of the lattice geometry or inclusion shape. Figures 5 ( b )  and (c) show a 
smoother variation of velocity corresponding to concentrations c = 0.1 and 0.3 
respectively. All curves have been drawn to the same scale, with velocities normalized 
with respect to GLi/p ,  where Lo is the lattice spacing. Thus the vertical scale shows 
how the velocity decreases as the concentration is increased. 

The shear stress on the surface of the solid inclusions is plotted in figure 6 as a 
function of angular position for four different concentrations. Each curve is normalized 
with respect to its average shear stress GA0/(2rca), where A, is the area of the unit 
cell. A t  small concentrations the stress is nearly uniform around the cylinder, while 
the variation is quite large for concentrations 0.7 and 0.785. This latter value is nearly 
equal to the close-packing limit in. For high concentrations the extremely small gap 
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FIQURE 5. Perspective view of velocity profiles for pressure-driven flow through a square lattice 
of circular cylinders. Flat circular regions represent the area occupied by the cylinders; the vertical 
scale is proportional to velocity. Decreasing height from (a)-(c) reflects reduced flow as concentration 
(size of cylinders) is increased. (a) c = 0.01 ; (a) 0.1 ; (c) 0.3. 

between cylinders allows negligible flow at the edges, and the shear stress drops to 
zero. The bulk of the flow is through the open channel centred among the cylinders. 
This is to be contrasted with transverse flow, for which the fluid would be forced 
through the gap. 

A plot of shear-stress variation for hexagonal arrays of circular cylinders is shown 
in figure 7. The same qualitative behaviour is observed, with uniform stress at small 
concentrations and large changes at higher concentrations. Comparing the c = 0.7 
curve with the same curve for the square lattice demonstrates that the hexagonal 
lattice will have more uniform stress distribution at any given concentration. This 
is simply because the hexagonal packing leads to a more uniform spacing between 
cylinders, with a larger cylinder gap at  equal concentrations. 

Next, we turn our attention to the permeability associated with the square and 
hexagonal lattices. The permeability K is defined in terms of the volume flow through 
the lattice, K = ,uQ/QA,. Since K has units of length squared, we consider the 
dimensionless ratio KIA,. The permeability for square and hexagonal lattices as a 
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FIQURE 6. Shear stress as a function of angular position for a square lattice of circular 
cylinders. 
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FIQURE 7. Shear stress as a function of angular position for a hexagonal lattice of circular 
cylinders. 
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FIQURE 8. Permeability k /A ,  as a function of concentration for square and hexagonal lattices 
of cylinders. 

function of concentration is shown in figure 8. The permeability for such lattices has 
been calculated previously by Sparrow & Loeffler (1 959) using another method. Our 
results are in excellent agreement with these authors. Perhaps the most interesting 
result on this figure is that the square array has higher permeability for all values 
of concentration. This fact might have been predicted from our discussion above. The 
hexagonal packing has a more uniform gap between the cylinders, but this allows 
the square lattice a larger clear channel at  the centre of each group of cylinders. Since 
volume flow rate increases rapidly with channel size (L3 for flat plates, L4 for 
cylinders), this clear channel gives a higher permeability for square lattices. As the 
concentration approaches zero, both lattices have the same asymptotic value 
KIA,  - (41t)-l lnc, and the ratio of permeabilities approaches unity. 

To further explore the effect of geometry on permeability, we consider more general 
inclusion shapes and lattice types. Consider a lattice of cylinder centres with base 
vectors (Lo, 0) and ( H  cos 8, H ) .  A unit cell in this lattice is a parallelogram with base 
Lo, height Ho and interior angle 8. Centred on the vertices of this parallelogram, the 
cylinder cross-sections are chosen to be ellipses of aspect ratio a/b, with the major 
axis tilted at  an angle Q with respect to the x-axis. The family of arrays thus 
constructed is characterized by five parameters (Ho/Lo, 8, a/b ,  Q, c). 

First, let us consider the effect of the lattice angle 8. With Lo = Ho and a/b = 1, 
the array of circular cylinders changes from a square lattice to a staggered lattice 
as 8 varies from 90" to 63.43'. A t  this angle, each cylinder is centred between the 
pair in adjoining rows. (Note that a hexagonal array is not included in this family, 
because i t  has Ho/Lo = i d 3 . )  The permeability for these arrays as a function of 8 is 
shown in figure 9, normalized with respect to the value for a square array. At low 
concentrations, the permeability is nearly independent of the stagger angle. A t  high 
concentrations the permeability varies dramatically, with the value for maximum 



462 R. E. Larson and J .  J .  L. Higdon 

0.6 

k/kW 

0.4 

0.2 

- 

- 

1 I 1 

3" 

FIGURE 9. Permeability aa a function of lattice angle for arrays of circular cylinders. 
Permeability is normalized with respect to its value for 8 = 90". 

stagger dropping to 60 % of that for a square lattice. This behaviour is analogous to 
that observed for hexagonal arrays. In each case the staggered array leads to a more 
uniform cylinder spacing, more uniform stress distribution and lower flow rate. 

As the next array parameter, we take the aspect ratio of the inclusions a/b.  Several 
families of arrays are shown in figure 10, with aspect ratios varying from 1 to as high 
as 10. For each family the permeability is normalized with respect to the member 
of that family with a/b = 1. The three arrays at high concentration (10 a-c), c = 0.3, 
show dramatically different behaviour, which can be explained by a simple geometric 
principle. For the square lattice with 9 = 0, increasing a/b increases the size of the 
clear channel. As with the previous arrays, for inclusions of comparable wetted 
surface, the size of the clear channel is the most important factor for determining 
the permeability. At small concentrations (figure 1Od-f) each geometry approaches 
an array of flat plates, and the permeability dependence is similar in all cases. The 
ratio K / K ,  would be even larger for still lower concentrations, since an array of flat 
plates with zero volume fraction has finite permeability, while the permeability for 
arrays of cylinders becomes infinite - In c. 

The final set of infinite arrays to be considered consists of elliptical cylinders with 
varying tilt angle 4 .  The permeability is plotted in figure 11 normalized with respect 
to its value at q5 = 0. In each case the aspect ratio is a/b = 2. At small concentration 
c = 0.05 a square lattice shows little variation as a function of 4. This is to be expected 
since the inclusions are fairly small and interactions are not important. For larger 
concentration, c = 0.3, both the square and hexagonal lattices show moderate 
fluctuation. The hexagonal array shows less variation because its inclusions are 
farther apart. Each array shows a permeability minimum at its maximum tilt angle 
owing to the reduction in size of the large clear channel. 
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RQURE 10. Permeability versus aspect ratio of elliptical inclusions for several lattice types; 
permeability is normalized with respect to its value at a/b = 1 : (a) square lattice, # = 0", c = 0.3; 
(b) square lattice, 45", 0.3; (c) hexagonal lattice, 30", 0.3; (d) square lattice, 0", 0.05; (e) square 
lattice, 45", 0.05; (f) hexagonal lattice, 30°, 0.05. 
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4 
FIQURE 11. Permeability as a function of inclusion axis tilt angle qi for elliptic cylinders of aspect 
ratio 2: 1, normalized with respect to the value for # = 0"; (a) square lattice, c = 0.3; (b) square 
lattice, 0.05; (c) hexagonal lattice, 0.3. 
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4. Axial flow in semi-infinite arrays 
The primary goal of this paper is to investigate the flow near the surface of porous 

media. We address this issue by considering flow through semi-infinite lattices with 
a simple shear flow in the pure fluid above the lattice. Velocity profiles in the first 
two cells of such a lattice are shown schematically in figure 12. A more precise plot 
of the velocity profile for square lattices of circular cylinders is given in figures 13 (a+) 
for three different concentrations: c = 0.05,0.001,0.00001. In each case the dashed 
lines and solid lines represent velocity profiles at the positions sketched in figure 12. 
The most striking feature of these plots is how quickly the velocity develops a 
self-similar profile, which is repeated as we go deeper into the lattice. From the very 
first cell (0 < y < l) ,  which extends above the first row of inclusions, the velocity 
along the centreline plane (solid line) is nearly unchanged except for the scaling factor 
in each cell. In the plane intersecting the inclusions (dashed line), the first cell shows 
a simple shear profile, while all cells beneath this cell have similar profiles. The rapid 
development of the self-similar profiles is especially surprising given the low 
concentration of these arrays. The effects of concentration on the velocity are readily 
apparent in figure 13. First, the highest concentration c = 0.05 causes a much more 
rapid decrease in velocity than for the other arrays. Secondly, we observe a significant 
difference between the velocity profiles in the centreline plane and in the inclusion 
plane for the high-concentration array. As the concentration decreases, these curves 
more closely approach each other. For asymptotically small concentrations, the two 
profiles will coincide except for a sharp spike reducing the velocity to zero on the 
inclusions. This spike is of the form In r because its asymptotic effect is that of an 
axial point force. Velocity profiles for high concentrations will resemble figure 13 (a)  
with a more rapid decay in the velocity and smaller flow in the inclusion plane. 

The shear-stress distributions for the three arrays considered above are plotted in 
figures 14 (a-c). Only the stress in the first two rows of the lattice is shown. The rapid 
drop off in shear stress from the top row to the second row clearly demonstrates the 
decay of the velocity field in the lattice. The distribution of shear stress around the 
cylinder (figure 14a) also reflects this behaviour, with its value at the bottom 
(0 = -90') being a small fraction of its value at the top of the cylinder (0 = 90'). 
As with the infinite arrays, the stress distribution becomes more uniform as the 
concentration decreases. 

4.1. Slip velocities for simple arrays 
One way to interpret the surface flow in a macroscopic sense is to define a slip velocity 
as discussed in $1.  Let us define the nominal interface of the medium to be the 
plane intersecting the inclusion centres in the top row of the lattice. The slip velocity 
for a simple shear flow over the medium is just 

ki 
a 

U ,  = - - j + O ( k ) .  

To illustrate the sensitivity of this condition to the choice of the interface plane, 
consider a vertical shift of the nominal interface of magnitude S. This induces a change 
in the slip velocity of order ?a. If 6 is only as large as the cylinder radius a, the change 
in us is ?a, which is much larger than the leading term if a S= ki,  or equivalently if 
c %- k /A , .  This condition holds for all geometries considered in figure 8, except for 
those of very small concentration c < 0.02. We conclude that the slip velocity is likely 
to be extremely sensitive to the position of the interface. 
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FIQURE 12. Schematic view of velocity profiles in a semi-infinite lattice of cylinders. 

To calculate a slip velocity, we calculate the total volume flux Q+ between the 
interface and a plane a distance h above the interface 

Equating this flux with the macroscopic prediction 

Q+ = u s h + ~ h 2  (17) 

gives the value of the slip velocity. This is equivalent to the experimental procedure 
of Beavers & Joseph. Note that the prediction for us is insensitive to h for all values 
greater than approximately one cell height. 

Another way to define the slip velocity is in terms of the volume flow rate below 
the interface. If we assume the flow on a macroscopic level is described by Brinkman’s 
equation with p* = p then the mean velocity is given by 

u = us eglk+, (18) 

and the flux between the interface and a plane at y = - h is 

Q- = us j$(l -e-h/a), (19) 

Equating this expression with the calculated value for Q- gives the value of the slip 
velocity. 

Values of the slip velocity based on the flux above and below the interface are 
shown in figure 15 for square and hexagonal lattices of circular cylinders. The dashed 
curve is based on the flux above the interface, while the solid curve is based on the 
flux below. We see a noticeable disparity between the two definitions except at 
exceedingly small concentrations. The traditional definition based on the flux above 
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FIQURE 13. Velocity profiles for square lattices of circular cylinders. Dashed and solid lines 
correspond to positions illustrated in figure 12. The velocity in each vertical panel is scaled to show 
self-similar profiles. (a) c = 0.05, scaling factors for velocity 0.990, 7.16, 116, 1890. ( b )  c = 0.001, 
scaling factors for velocity 0.786, 2.78, 12.8, 59.4. (c) = O.OOOO1, scaling factors for velocity 0.675, 
1.80, 5.51, 16.9. 
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the interface may even take on negative values owing to the slight protrusion of 
the inclusions above the nominal interface. If the interface were chosen as the plane 
tangent to the top row of cylinders, the slip velocity would be shifted upward and 
would be positive for all concentrations. Since such a change would be indiscernible 
on a macroscopic level, we conclude that it is not possible to define a consistent value 
for the slip velocity. All reasonable choices for a are equivalent subject to microscopic 
changes in the definition of the interface. 

4.2. Decay factor 
Another important characteristic of flow near the surface of a porous medium is the 
rate at  which the velocity decays as we enter the medium. Brinkman's equation 
predicts 

u = us exp [y/ki($)'], 

which describes the decay of the macroscopic average velocity. 

of the velocity between two points in the medium 
An estimate for the quantity (,u*/,u)i may be obtained by calculating the decay ratio 

From which we have 

Since the microscopic velocity varies over each cell, we calculate (,u*/,u)i from the 
average velocity in two adjoining cells. Owing to the rapid development of the 
self-similar flow fields, this value is insensitive to the cells chosen, for all cells below 
the first. 

The effective value of (,u*/,u)i for simple arrays of circular cylinders is shown in 
figure 16 as a function of concentration. Above a concentration of c = 0.4 the velocity 
decays so rapidly over each cell that it is not meaningful to define a decay ratio in 
analogy with Brinkman's equation. Over the range of concentrations presented, 
(p*/p)t remains close to 1 implying that Brinkman's equation provides a reasonable 
description of the rate of decay of the flow field. 

To further analyse the effect of geometry on decay rate, we consider lattices of more 
general configuration. The decay factor (p*/,u)i for staggered lattices with Lo = Ho 
and 0 running from 90" to 63.43" is plotted in figure 17. This curve shows the decay 
factor to be nearly independent of lattice stagger. 

The effect of the inclusions' aspect ratio for four different arrays is shown in 
figure 18. The most interesting curves in this figure are those corresponding to the 
square arrays q5 = 0" and 9 = 90". For infinite media these two arrays are identical, 
being distinguished only by a 90" rotation of the array. Thus they might represent 
two different 'slices' of the same material. As the aspect ratio a/b  approaches in- 
finity, array 18 (a) approaches a set of flat plates normal to the interface, while 18 ( b )  
approaches a set of plates parallel to the interface. In  both cases, the permeability 
approaches a finite value, but the decay factor for 18 (a )  is finite, while that for 18(b)  
approaches zero as the flat plates shut, off the flow in the interior. In  this example 
it is clear that we have an anisotropic medium for which the decay rate is anisotropic 
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FIQTJRE 15. Slip velocity as a function of concentration for (a) a square lattice, ( b )  a hexagonal lattice. 
Solid line is based on flow rate below interface. Dashed line is based on flow above interface. 

as well as the permeability tensor. The decay rate is affected by the permeability in 
the flow direction and by some measure of flow resistance in the direction normal to 
the surface. This resistance may be related to the permeability for flow normal to 
the surface, but is not necessarily expressible as a function of permeability alone. 

Unfortunately, Brinkman's equation is unable to distinguish between the two 
media in this example, even with the introduction of an anisotropic permeability 
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FIQURE 16. Decay factor b*/,u)i as a function of concentration for square and hexagonal arrays 
of circular cylinders. 

FIQURE 17. Decay factor (p*/p)# as a function of lattice angle 0 for circular cylinders, c = 0.05. 
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FIGURE 18. Decay factor (p*/p)i aa a function of inclusion aspect ratio for different lattice 
types: (a) square, q5 = 0’; (b)  square, 90’; (c) square, 45O; (d )  hexagonal, 30°. 

tensor. The coordinate system with flow along the z-axis and interface in the plane 
y = 0 coincides with the principal axes of the permeability tensor. Thus the 
permeability is diagonal and only the k,, component enters Brinkman’s equation for 
the axial flow. We conclude that Brinkman’s equation gives identical predictions for 
the two vastly different flows in the example given above. The only resolution for 
such problems is to adopt a more rigorous model of porous media, including terms 
such as those proportional to the velocity gradient, in the form illtj, au,/ax,. 

In summary, we fhd  that Brinkman’s equation may be worthwhile for describing 
axial flow through lattices isotropic in the plane normal to the flow. For more general 
media, it may fail to predict the flow field even in a qualitative sense. It is not possible 
to define a consistent value for slip coefficients for any media, because microscopic 
changes in the position of the nominal interface lead to O(1) changes in the slip 
coefficient. Thus all reasonable choices for a are equivalent, being distinguished by 
translations of the nominal interface which are indiscernible on a macroscopic level. 

This work was supported by grants from the National Science Foundation and the 
Dow Chemical Company. 
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